Projects


Social Media Integration and Interaction Analysis Using Natural Language Processing

The goal of our project was to implement a score system for Convention Nation, a company that recommends conventions to its users. Scores would be assigned based on level of engagement with Convention Nation’s social media presence. This project combined the principles of gamification with a range of technologies offered at OPIM Innovate. We incorporated IOT in the form of a device that displays Facebook data, AI in the form of sentiment analysis and AR in the form of Splunk’s AR workspaces.

We were able to take data from Facebook using the Graph Application Programming Interface. We then used Natural Language Toolkit, a platform for working with natural language data in Python, to perform sentiment analysis on Facebook comments. For our presentation, we created a Facebook page that visitors could interact with and assigned scores to the administrators of the page. As each page admin made posts and visitors made comments on them, scores changed based on the level of constructive engagement. Splunk, a data analytics platform, provided a series of tools that could be used to view trends in the data and display it in augmented reality. I designed laser cut QR code lapel pins using the laser cutter at the Maker Studio in the library. The Splunk AR workspaces allowed us to scan the pins with an iPad and see our engagement scores appear next to us.

By: Eli Udler

 









The Heart Rate Hat

Wearable biometric technology is currently revolutionizing healthcare and consumer electronics. Internet-enabled pacemakers, smart watches with heart rate sensors and all manner of medical equipment now merge health with convenience. This is all a step in the right direction, but not quite the end goal. In fact, it seems that we’re past the point where technology can fix all the problems we’ve created. If this is the case then, at the very least, I think we can have a bit of fun while we’re still alive. Let us not mince words: We’re headed straight for a global environmental collapse, and I propose we go out in style.

For this reason, I’ve designed the Heart Rate Hat. This headwear is simultaneously a fashion statement, a demonstration of the capabilities of biometric sensors and the first step to the creation of a fully functioning cyborg. The Heart Rate Hat is exactly what I need to tie together my vision for a cyberpunk dystopia. Combined with other gear from the lab, such as our EEG headset and our electromyography equipment, we could raise some very interesting questions about what kinds of biometric data we actually want our technology to collect. We could also explore the consequences of being able to quantify human emotion and the use of such data to make predictions. What once was the realm of science fiction, we are now turning into reality.

The design of the device is relatively simple. I used the FLORA (a wearable, Arduino-compatible microcontroller) as the brain of the device, a Pulse Sensor to read heart rate data from the user’s ear lobe and several NeoPixel LED sequins for output. The speed at which the LEDs blink is determined by heart rate and the color is determined by heart rate variance. In the process of designing this, I learned how to work with conductive thread, how to program addressable LEDs and how to read and interpret heart rate and heart variance data from a sensor. As these are all important skills for wearable electronics prototyping, a similar project may be viable as an introduction to wearable product design. Going forward, I would like to explore other options for visualizing output from biometric sensors. I may work on outputting data from such a device to a computer via Bluetooth, incorporate additional sensors into the design and log the data to be used for analysis.

Written By: Eli Udler


K-Cup Holder for the UConn Writing Center

One of the most amazing things about 3D printing is the speed at which an idea becomes a design. With the growing prevalence of this technology, the time between thinking up an object that you would like to exist and seeing it constructed continues to decrease. The thought of turning something I dreamed up into a reality was my primary inspiration for this project: a sculpture of the UConn Writing Center logo that doubles up as a K-Cup holder.

I was excited to find out that a Writing Center tutor was kind enough to donate a Keurig to the office, putting lifegiving caffeine in the hands of tutors without the cost of running down to Bookworms Cafe. Alas, it was disturbing to see that the K-Cups used by the machine were being stored in a small basket. Now, I’m not the Queen of England or anything, but I have my limits. The toll on my mental health taken by watching the cups lazily thrown into a pile in the woven container was enough to force me to take action. With less than half an hour of active work, I was able to turn the Writing Center logo, a stylized “W”, into a three-dimensional model complete with holes designed to hold K-Cups.

But there’s another reason I decided to turn my strange idea into a reality: I wanted to highlight the range of resources offered on campus to UConn students. The OPIM Innovate space and the Writing
Center aren’t so different, really. While the Writing Center can assist students with their writing in a variety of disciplines, Innovate provides a range of tech kits that teach students about emerging
technologies. Both are spaces outside the classroom where students can learn relevant skills, regardless of their majors. Most importantly, perhaps, both were kind enough to hire me.

The print currently resides in the Writing Center office where tutors can sit down, enjoy a cup of freshly brewed coffee from a large sculpture of a W and savor the bold taste of interdisciplinary collaboration.

Written by: Eli Udler